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(ω, c)−periodic solution for an impulsive system of differ-
ential equations with the quadrate of Gerasimov–Caputo
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Abstract. Existence and uniqueness of (ω, c)−periodic solution of boundary value problem for
a nonlinear system of ordinary differential equations with the quadrate of Gerasimov–Caputo
operator, impulsive effects and maxima are studied. Problem is reduced to solvability of the
complex system of nonlinear functional integral equations. The method of contracted mapping
is used in the proof of one-valued solvability of nonlinear functional integral equations. Some
estimates are obtained for the (ω, c)−periodic solution of the problem.
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1. Introduction

The dynamics of evolving processes sometimes undergoes abrupt changes. Often such
short-term perturbations are interpreted as impulses. That is, we actually have the dy-
namic systems with impulsive actions. So, we have to consider differential equations,
the solutions of which are functions with first kind discontinuities at times. Impul-
sive differential and integro-differential equations have applications in biological, chem-
ical and physical sciences, ecology, biotechnology, industrial robotic, pharmacokinet-
ics, optimal control, etc. [1, 2, 3, 4, 5]. In particular, some problems with impul-
sive effects appear in biophysics at micro- and nano-scales [6, 7, 8, 9, 10]. A lot of
publications of studying on differential equations with impulsive effects are appearing
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Fractional calculus plays an important role in the mathematical modeling of many
problems in scientific and engineering disciplines [25, 26, 27, 28]. In the works [29, 30, 31,
32, 33, 34, 35, 36, 37], the problems of applying of the fractional calculations to the theory
of differential equations are considered. In the works [38, 39, 40], the periodic solutions
of impulsive differential equations are studied. We note that the theory of (ω, c)−periodic
differential systems are important part of the theory of differential equations. Therefore,
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this direction is rapidly developing. A large number of papers are published in this field
in serious scientific journals (see, for examples, the works [41, 42, 43], where are studied
the problems of unique existence of the (ω, c)−periodic solution for impulsive differential
equations.

In our present paper on the interval Ω ≡ [0, ω] \
{
ti
}
for i = 1, 2, ..., p we consider the

questions of existence and uniqueness of the (ω, c)−periodic solutions of the nonlinear sys-
tem of impulsive differential equations with the quadrate of Gerasimov–Caputo operator
and maxima

[CD
α
0 t]

2 x(t) = f (t, x(t),max {x(τ) |τ ∈ [t− h, t]}) , (1)

where 0 < h = const is delay.

The equation (1) we study with (ω, c)−periodic conditions

x(ω) = c · x(0), (2)

CD
α
0 tx(ω) = c ·C D α

0 tx(0) (3)

and nonlinear impulsive conditions

x
(
t+i

)
− x

(
t−i

)
= Fi (x (ti)) , i = 1, 2, ..., p, (4)

CD
α
0 tx

(
t+i

)
−C D α

0 tx
(
t−i

)
= Gi (x (ti)) , i = 1, 2, ..., p, (5)

where CD
α
0 t is the Gerasimov–Caputo α-order fractional derivative for a function x(t) and

defined by

CD
α
0tx(t) = I 1−α

0t x′(t) =
1

Γ(1− α)

t∫
0

x′(s) ds

(t− s)α
, t ∈ (0, ω),

I α
0tx(t) =

1

Γ(α)

t∫
0

(t− s)α−1x(s)ds, 0 < α ≤ 1,

Γ(α) is the Gamma-function, 0 = t0 < t1 < ... < tp < tp+1 = ω, x ∈ X, X is the
closed bounded domain in the space Rn, f ∈ Rn, x

(
t+i

)
= lim

ν→0+
x (ti + ν) , x

(
t−i

)
=

lim
ν→0−

x (ti − ν) .

We note that this paper is further development of the work [44] to the case of quadrate
of fractional operator. In addition, we note that the works [38, 39, 40] are not particular
cases of the present paper. Because in our work we assume that c ̸= 1.

By C ([0, ω],Rn) is denoted the Banach space, which consists continuous vector func-
tions x(t), defined on the segment [0, ω], with the norm

∥x(t) ∥ =

√√√√ n∑
j=1

max
0≤t≤ω

|xj(t) |.
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By PC ([0, ω],Rn) is denoted the linear vector space

PC ([0, ω],Rn) =
{
x : [0, ω] → Rn; x(t) ∈ C ((ti, ti+1] ,Rn) , i = 1, ..., p

}
,

where x
(
t+i

)
and x

(
t−i

)
(i = 0, 1, ..., p) exist and are bounded; x

(
t−i

)
= x (ti). Note, that

the linear vector space PC ([0, ω],Rn) is Banach space with the norm

∥x(t) ∥PC = max
{
∥x(t) ∥C(ti,ti+1]

, i = 1, 2, ..., p
}
.

We use also the vector space BD ([0, ω],Rn), which is Banach space with the following
norm

∥x(t) ∥BD = ∥x(t) ∥PC + h ·
∥∥x′(t) ∥∥

PC
,

where 0 < h = const is delay given by equation (1).
Formulation of problem. To find the (ω, c)−periodic function x(t) ∈ BD ([0, ω],Rn),
which for all t ∈ Ω satisfies the system of differential equations (1) for 0 < α ≤ 1,
(ω, c)−periodic conditions (2), (3) and for t = ti, i = 1, 2, ..., p, 0 < t1 < t2 < ... < tp < ω
satisfies the nonlinear impulsive conditions (4), (5).

2. Reduction to functional integral equation

Let the function x(t) ∈ BD ([0, ω],Rn) is a solution of the (ω, c)−periodic boundary
value problem (1)–(5). Then, by virtue of fractional operators, after integration on the
intervals (0, t1] , (t1, t2] , . . . , (tp, tp+1] we have:

I α
0 t1CD

α
0 t1

[
D α

0 t1x(t)
]
= I α

0 t1I
1−α
0 t1

[
D α

0 t1x(t)
]′
= I 1

0 t1

[
D α

0 t1x(t)
]′
=

=

t1∫
0

[
D α

0 t1x(s)
]′
ds = D α

0 t1x(t
−
1 )−D α

0 t1x(0
+), (6)

I α
0t1f (t, x(t), y(t)) =

1

Γ(α)

t1∫
0

(t1 − s)α−1f (s, x(s), y(s)) ds, (7)

1

Γ(α)

t2∫
t1

(t2 − s)α−1f (s, x(s), y(s)) ds = D α
t1t2x(t

−
2 )−D α

t1t2x(t
+
1 ), (8)

...

1

Γ(α)

ω∫
tp

(T − s)α−1f (s, x(s), y(s)) ds = D α
tptp+1

x(t−p+1)−D α
tptp+1

x(t+p ), (9)

where f (t, x(t), y(t)) = f (t, x(t),max {x(τ) |τ ∈ [t− h, t]}) .
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From the formulas (6)–(9) and D α
0t1

x(0+) = D α
0t1

x(0), D α
tptp+1

x(t−p+1) = D α
tptp+1

x(t),
on the interval (0, ω] we have

1

Γ(α)

t∫
0

(t− s)α−1f (s, x(s), y(s)) ds = −CD
α
0t1x(0)−

[
CD

α
t1t2x

(
t+1

)
−C D α

0t1x (t1)
]
−

−
[
CD

α
t2t3x

(
t+2

)
−C D α

t1t2x (t2)
]
− . . . −

[
CD

α
tptp+1

x
(
t+p

)
−C D α

tp−1tpx (tp)
]
+C D α

tptp+1
x(t).

Taking into account the impulsive condition (5) in the last equality, we obtain

CD
α
0tx(t) =C D α

0tx(0) +
∑

0<ti<t

Gi (x (ti)) +
1

Γ(α)

t∫
0

(t− s)α−1f (s, x(s), y(s)) ds. (10)

Hence, we have

CD
α
0tx(ω) =C D α

0tx(0) +
∑

0<ti<ω

Gi (x (ti)) +
1

Γ(α)

ω∫
0

(ω − s)α−1f (s, x(s), y(s)) ds. (11)

Let the function x(t) ∈ BD ([0, ω],Rn) in (10), satisfies the boundary value condition (3).
Then from (11) we have

CD
α
0tx(0) =

1

c− 1

∑
0<ti<ω

Gi (x (ti)) +
1

(c− 1)Γ(α)

ω∫
0

(ω − s)α−1f (s, x(s), y(s)) ds. (12)

By virtue of (12), from (10) we obtain the functional differential equation

CD
α
0tx(t) =

1

c− 1

∑
0<ti<ω

Gi (x (ti)) +
∑

0<ti<t

Gi (x (ti))+

+
1

(c− 1)Γ(α)

ω∫
0

(ω − s)α−1f (s, x(s),max {x(τ) |τ ∈ [s− h, s]}) ds+

+
1

Γ(α)

t∫
0

(t− s)α−1f (s, x(s),max {x(τ) |τ ∈ [s− h, s]}) ds. (13)

Repeating the process above and using conditions (2) and (4), from (13) we arrive at
the following system of functional integral equations

x(t) =
1

c− 1

∑
0<ti<ω

Fi (x (ti)) +
∑

0<ti<t

Fi (x (ti))+

68



+
1

(c− 1)Γ(α)

tα

α

∑
0<ti<ω

Gi (x (ti)) +
1

Γ(α)

t∫
0

(t− s)α−1
∑

0<ti<s

Gi (x (ti)) ds+

+
1

(c− 1)2Γ(α)

ωα

α

∑
0<ti<ω

Gi (x (ti)) +
1

(c− 1)Γ(α)

ω∫
0

(ω − s)α−1
∑

0<ti<s

Gi (x (ti)) ds+

+
1

(c− 1)2Γ2(α)

ω∫
0

(ω − s)α−1

ω∫
0

(ω − θ)α−1f (θ, x(θ),max {x(τ) |τ ∈ [θ − h, θ]}) dθds+

+
1

(c− 1)Γ2(α)

ω∫
0

(ω − s)α−1

s∫
0

(s− θ)α−1f (θ, x(θ),max {x(τ) |τ ∈ [θ − h, θ]}) dθds+

+
1

(c− 1)Γ2(α)

t∫
0

(t− s)α−1

ω∫
0

(ω − θ)α−1f (θ, x(θ),max {x(τ) |τ ∈ [θ − h, θ]}) dθds+

+
1

Γ2(α)

t∫
0

(t− s)α−1

s∫
0

(s− θ)α−1f (θ, x(θ),max {x(τ) |τ ∈ [θ − h, θ]}) dθds. (14)

Lemma 2.1. The following equalities are true:

t∫
0

(t− s)α−1

s∫
0

(s− θ)α−1f(θ)dθds =
Γ2(α)

Γ(2α)

t∫
0

(t− θ)2α−1f(θ)dθ, (15)

ω∫
0

(ω − s)α−1

s∫
0

(s− θ)α−1f(θ)dθds =
Γ2(α)

Γ(2α)

ω∫
0

(ω − θ)2α−1f(θ)dθ. (16)

Proof. The left-hand side of (15) we rewrite as

t∫
0

(t− s)α−1

s∫
0

(s− θ)α−1f(θ)dθds =

t∫
0

f(θ)

t∫
θ

(t− s)α−1(s− θ)α−1dsdθ. (17)

It is easy to calculate the internal integral on the right-hand side of (17):

t∫
θ

(t− s)α−1(s− θ)α−1ds = (t− θ)2α−1

1∫
0

τα−1(1− τ)α−1dτ = B(α, α)(t− θ)2α−1. (18)

Taking (18) and B(α, α) = Γ2(α)
Γ(2α) into account, from (17) we obtain (15). The proof of

(16) is similar. The Lemma 2.1 is proved.
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Lemma 2.2. The following equalities are true:

t∫
0

(t− s)α−1

ω∫
0

(ω − θ)α−1f(θ)dθds =
tα

α

ω∫
0

(ω − θ)α−1f(θ)dθ, (19)

ω∫
0

(ω − s)α−1

ω∫
0

(ω − θ)α−1f(θ)dθds =
ωα

α

ω∫
0

(ω − θ)α−1f(θ)dθ. (20)

Proof. The left-hand side of (19) we rewrite as:

t∫
0

(t− s)α−1

ω∫
0

(ω − θ)α−1f(θ)dθds =

t∫
0

(t− s)α−1ds

ω∫
0

(ω − θ)α−1f(θ)dθ. (21)

We calculate the first integral on the right-hand side of (21):

t∫
0

(t− s)α−1ds = −(t− s)α

α

∣∣∣∣s=t

s=0

=
tα

α
. (22)

By virtue of (22), from (21) we obtain (19). The proof of (20) is similar. The Lemma 2.2
is proved.

Applying the Lemmas 2.1 and 2.2, from (14) we obtain

x(t) = J(t;x) ≡ 1

c− 1

∑
0<ti<ω

Fi (x (ti)) +
∑

0<ti<t

Fi (x (ti))+

+χ(t)
∑

0<ti<ω

Gi (x (ti)) +

ω∫
0

K1(t, s)
∑

0<ti<s

Gi (x (ti)) ds+

+

ω∫
0

K2(t, s)f (s, x(s),max {x(τ) |τ ∈ [s− h, s]}) ds, (23)

where

χ(t) =
(c− 1)tα + ωα

α(c− 1)2Γ(α)
, K1(t, s) =

{
(ω−s)α−1

(c−1)Γ(α) , t < s ≤ ω,
(t−s)α−1

Γ(α) + (ω−s)α−1

(c−1)Γ(α) , 0 ≤ s < t,

K2(t, s) =

{
(ω−s)2α−1

(c−1)Γ(2α) +
ωα+(c−1)tα

α(c−1)2Γ2(α)
(ω − s)α−1, t < s ≤ ω,

(t−s)2α−1

Γ(2α) + (ω−s)2α−1

(c−1)Γ(2α) +
ωα+(c−1)tα

α(c−1)2Γ2(α)
(ω − s)α−1, 0 ≤ s < t.
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Lemma 2.3. For the equation (23) is true the following estimate

∥ J(t;x) ∥PC ≤ M2p
1 + |c− 1|
|c− 1|

+M3p
[1 + |c− 1|]2ωα

α(c− 1)2Γ(α)
+

+M1
α|c− 1|2 Γ2(α) + α|c− 1|Γ2(α) + 2Γ(2α)

2α2|c− 1|2 Γ2(α) Γ(2α)
ω2α, (24)

where M1 = ∥ f ∥ , M2 = max
1≤i≤p

∥Fi ∥ , M3 = max
1≤i≤p

∥Gi ∥ .

Proof. From the equation (23) we obtain

∥ J(t;x) ∥PC ≤ 1 + |c− 1|
|c− 1|

∑
0<ti<ω

∥Fi∥+

+

[
max
t∈Ω

|χ(t) |+
ω∫

0

K1(t, s)ds

] ∑
0<ti<ω

∥Gi∥+ ∥ f ∥
ω∫

0

K2(t, s)ds ≤

≤ p
1 + |c− 1|
|c− 1|

max
1≤i≤p

∥Fi ∥+ p
[1 + |c− 1|]2ωα

α(c− 1)2Γ(α)
max
1≤i≤p

∥Gi ∥+

+
α|c− 1|2 Γ2(α) + α|c− 1|Γ2(α) + 2Γ(2α)

2α2|c− 1|2 Γ2(α) Γ(2α)
ω2α ∥ f ∥ . (25)

From the estimate (25) follows (24). Lemma 2.3 is proved.

Lemma 2.4. Let the following conditions to be met: there exist constants Pi, Qi, i =
1, 2, 3, such that
1). ∥ f (t, x(t), y(t)) ∥ ≤ P1 ∥x(t) ∥+Q1 < ∞;
2). max

1≤i≤p
∥Fi (x(ti)) ∥ ≤ P2 max

1≤i≤p
∥x(ti) ∥+Q2 < ∞;

3). max
1≤i≤p

∥Gi (x(ti)) ∥ ≤ P3 max
1≤i≤p

∥x(ti) ∥+Q3 < ∞.

Then the following estimate is true

∥x(t) ∥PC ≤ µ

1− ν
, (26)

where

µ = p

[
Q2

1 + |c− 1|
|c− 1|

+Q3
[1 + |c− 1|]2ωα

α(c− 1)2Γ(α)

]
+

+Q1
α|c− 1|2 Γ2(α) + α|c− 1|Γ2(α) + 2Γ(2α)

2α2|c− 1|2 Γ2(α) Γ(2α)
ω2α,

ν = p

[
P2

1 + |c− 1|
|c− 1|

+ P3
[1 + |c− 1|]2ωα

α(c− 1)2Γ(α)

]
+

+P1
α|c− 1|2 Γ2(α) + α|c− 1|Γ2(α) + 2Γ(2α)

2α2|c− 1|2 Γ2(α) Γ(2α)
ω2α < 1.
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Proof. Similar to the proof of the Lemma 2.3 above, we obtain

∥ J(t;x) ∥PC ≤ 1 + |c− 1|
|c− 1|

∑
0<ti<ω

∥Fi∥+

+

[
max
t∈Ω

|χ(t) |+
ω∫

0

K1(t, s)ds

] ∑
0<ti<ω

∥Gi∥+ ∥ f ∥
ω∫

0

K2(t, s)ds ≤

≤ p
1 + |c− 1|
|c− 1|

[
P2 max

1≤i≤p
∥x(ti) ∥+Q2

]
+ p

[1 + |c− 1|]2ωα

α(c− 1)2Γ(α)

[
P3 max

1≤i≤p
∥x(ti) ∥+Q3

]
+

+
α|c− 1|2 Γ2(α) + α|c− 1|Γ2(α) + 2Γ(2α)

2α2|c− 1|2 Γ2(α) Γ(2α)
ω2α [P1 ∥x(t) ∥+Q1] ≤

≤ p

[
P2

1 + |c− 1|
|c− 1|

+ P3
[1 + |c− 1|]2ωα

α(c− 1)2Γ(α)

]
max
1≤i≤p

∥x(ti) ∥+

+P1
α|c− 1|2 Γ2(α) + α|c− 1|Γ2(α) + 2Γ(2α)

2α2|c− 1|2 Γ2(α) Γ(2α)
ω2α ∥x(t) ∥+

+pQ2
1 + |c− 1|
|c− 1|

+ pQ3
[1 + |c− 1|]2ωα

α(c− 1)2Γ(α)
+

+Q1
α|c− 1|2 Γ2(α) + α|c− 1|Γ2(α) + 2Γ(2α)

2α2|c− 1|2 Γ2(α) Γ(2α)
ω2α. (27)

From (27) we derive the estimate (26). The Lemma 2.4 is proved.

Lemma 2.5 ([33]). For the difference of two functions with maxima there holds the fol-
lowing estimate

∥max {x(τ) |τ ∈ [t− h, t]} −max {y(τ) |τ ∈ [t− h, t]} ∥ ≤

≤ ∥x(t)− y(t) ∥+ 2h

∥∥∥∥ ∂

∂ t
[x(t)− y(t)]

∥∥∥∥ ,
where 0 < h = const.

3. Main result

Theorem 3.1. Let f : Ω×Rn×Rn → Rn be a continuous function and f(t+ω, cx, cy) =
c f(t, x, y). Assume that there exist positive quantities M1, M2, M3, L1, L2i, L3i such that
for all t ∈ Ω are fulfilled the following conditions:
1. For the positive integer p, there hold Fi = Fi+p, Gi = Gi+p, ti+p = ti + ω;
2. ∥ f (t, x(t), y(t)) ∥ ≤ M1 < ∞;
3. max

1≤i≤p
∥Fi (x(ti)) ∥ ≤ M2 < ∞, max

1≤i≤p
∥Gi (x(ti)) ∥ ≤ M3 < ∞;

4. ∥ f (t, x1, y1)− f (t, x2, y2) ∥ ≤ L1

[
∥x1 − x2 ∥+ ∥ y1 − y2 ∥

]
;
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5. ∥Fi (t, x1)− Fi (t, x2) ∥ ≤ L2i ∥x1 − x2 ∥ ;
6. ∥Gi (t, x1)−Gi (t, x2) ∥ ≤ L3i ∥x1 − x2 ∥ ;
7. The radius of the inscribed ball in X is greater than

M2p
1 + |c− 1|
|c− 1|

+M3p
[1 + |c− 1|]2ωα

α(c− 1)2Γ(α)
+

+M1
α|c− 1|2 Γ2(α) + α|c− 1|Γ2(α) + 2Γ(2α)

2α2|c− 1|2 Γ2(α) Γ(2α)
ω2α;

8. ρ < 1, where ρ = β1 + hβ2 and β1, β2 are defined from (31) and (35) below.
Then the problem (1)–(5) has a unique (ω, c)−periodic solution for all t ∈ Ω.

Proof. The theorem we proof by the method of contacting mapping. According to the
theorem condition, we have

f(t+ ω, x(t+ ω), y(t+ ω)) = f(t+ ω, c x(t), c y(t)) = c f(t, x(t), y(t)).

We differentiate (23):

x′(t) = J(t;x′) ≡ χ′(t)
∑

0<ti<ω

Gi (x (ti)) +

ω∫
0

K ′
1(t, s)

∑
0<ti<s

Gi (x (ti)) ds+

+

ω∫
0

K ′
2(t, s)f (s, x(s),max {x(τ) |τ ∈ [s− h, s]}) ds, (28)

where

χ′(t) =
tα−1

(c− 1)Γ(α)
, K ′

1(t, s) =

{
0, t < s ≤ ω,
(α−1)(t−s)α−2

Γ(α) , 0 ≤ s < t,

K ′
2(t, s) =

{
tα−1

(c−1)Γ2(α)
(ω − s)α−1, t < s ≤ ω,

(2α−1)(t−s)2α−2

Γ(2α) + tα−1

(c−1)Γ2(α)
(ω − s)α−1, 0 ≤ s < t.

For the difference of two operators in (23), we have estimate

∥J(t;x)− J(t; y)∥ ≤ 1 + |c− 1|
|c− 1|

p∑
i=1

∥Fi (x (ti))− Fi (y (ti)) ∥+

+
[1 + |c− 1|]2ωα

α(c− 1)2Γ(α)

p∑
i=1

∥Gi (x (ti))−Gi (y (ti)) ∥+

+
α|c− 1|2 Γ2(α) + α|c− 1|Γ2(α) + 2Γ(2α)

2α2|c− 1|2 Γ2(α) Γ(2α)
ω2α×

×∥ f (t, x(t),max {x(τ) |τ ∈ [t− h, t]})− f (t, y(t),max {y(τ) |τ ∈ [t− h, t]}) ∥ .
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Hence, using conditions of the theorem, we have

∥J(t;x)− J(t; y)∥ ≤ 1 + |c− 1|
|c− 1|

p∑
i=1

L 2i ∥x (ti)− y (ti) ∥+

+
[1 + |c− 1|]2ωα

α(c− 1)2Γ(α)

p∑
i=1

L 3i ∥x (ti)− y (ti) ∥+

+L1
α|c− 1|2 Γ2(α) + α|c− 1|Γ2(α) + 2Γ(2α)

2α2|c− 1|2 Γ2(α) Γ(2α)
ω2α×

×
[
∥x(t)− y(t) ∥+ ∥max {x(τ) |τ ∈ [t− h, t]} −max {y(τ) |τ ∈ [t− h, t]} ∥

]
. (29)

By virtue of estimate given in the Lemma 2.5, from (29) we obtain that

∥J(t;x)− J(t; y)∥ ≤ 1 + |c− 1|
|c− 1|

p∑
i=1

L 2i ∥x (ti)− y (ti) ∥+

+
[1 + |c− 1|]2ωα

α(c− 1)2Γ(α)

p∑
i=1

L 3i ∥x (ti)− y (ti) ∥+

+2L1
α|c− 1|2 Γ2(α) + α|c− 1|Γ2(α) + 2Γ(2α)

2α2|c− 1|2 Γ2(α) Γ(2α)
ω2α×

×
[
∥x(t)− y(t) ∥+ h

∥∥x′(t)− y′(t)
∥∥ ] ≤ β1 ∥x(t)− y(t) ∥+ γ1h

∥∥x′(t)− y′(t)
∥∥ , (30)

where

β1 =
1 + |c− 1|
|c− 1|

p∑
i=1

L 2i +
[1 + |c− 1|]2ωα

α(c− 1)2Γ(α)

p∑
i=1

L 3i+

+L1
α|c− 1|2 Γ2(α) + α|c− 1|Γ2(α) + 2Γ(2α)

α2|c− 1|2 Γ2(α) Γ(2α)
ω2α, (31)

γ1 = L1
α|c− 1|2 Γ2(α) + α|c− 1|Γ2(α) + 2Γ(2α)

α2|c− 1|2 Γ2(α) Γ(2α)
ω2α. (32)

From (31) and (32) clear that β1 > γ1. So, the estimate (30) one can rewrite as

∥J(t;x)− J(t; y)∥PC ≤ β1
[
∥x(t)− y(t) ∥PC + h

∥∥x′(t)− y′(t)
∥∥
PC

]
. (33)

Now for the difference of two operators in (28), similarly, we have estimate

∥∥J(t;x′)− J(t; y′)
∥∥ ≤ ωα−1

|c− 1|Γ(α)

p∑
i=1

L 3i ∥x (ti)− y (ti) ∥+

+2L1
α|c− 1|Γ2(α) + Γ(2α)

α|c− 1|Γ2(α) Γ(2α)
ω2α−1×
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×
[
∥x(t)− y(t) ∥+ h

∥∥x′(t)− y′(t)
∥∥ ] ≤ β2 ∥x(t)− y(t) ∥+ γ2h

∥∥x′(t)− y′(t)
∥∥ , (34)

where

β2 =
ωα−1

|c− 1|Γ(α)

p∑
i=1

L 3i + 2L1
α|c− 1|Γ2(α) + Γ(2α)

α|c− 1|Γ2(α) Γ(2α)
ω2α−1, (35)

γ2 = 2L1
α|c− 1|Γ2(α) + Γ(2α)

α|c− 1|Γ2(α) Γ(2α)
ω2α−1. (36)

From (35) and (36) clear that β2 > γ2. So, the estimate (34) one can rewrite as∥∥J(t;x′)− J(t; y′)
∥∥
PC

≤ β2
[
∥x(t)− y(t) ∥PC + h

∥∥x′(t)− y′(t)
∥∥
PC

]
. (37)

We multiply both sides of (37) to h term by term. Then, adding the estimates (33) and
(37) term by term, we obtain that

∥J(t;x)− J(t; y)∥BD ≤ ρ · ∥x(t)− y(t) ∥BD , (38)

where ρ = β1 + hβ2.

According to the last condition of the theorem ρ < 1, so right-hand side of (23) as
an operator is contraction mapping. From the estimates (24), (26) and (38) implies that
there exists a unique fixed point x(t), satisfying equation (1), (ω, c)−periodic conditions
(2), (3) and impulsive conditions (4), (5). The theorem is proved.

4. Conclusion

The theory of differential equations plays an important role in solving applied prob-
lems of sciences and technology. Especially, periodic and almost periodic boundary value
problems for differential equations with impulsive actions have many applications in math-
ematical physics, mechanics and technology, in particular in nanotechnology.

In this paper, we investigated the questions of (ω, c)−periodic solvability of the system
of impulsive differential equations (1) with the quadrate of Gerasimov–Caputo operator,
(ω, c)−periodic boundary value conditions (2), (3) and impulsive conditions (4), (5) for
t = ti, i = 1, 2, . . . , p, 0 < t1 < t2 < · · · < tp < T . The nonlinear right-hand side of this
equation consists the construction of maxima. The questions of existence and uniqueness
of the (ω, c)−periodic solution of the problem (1)–(5) are studied. The problem we reduce
to the (ω, c)−periodic solvability of the system of nonlinear functional integral equations
(23). The estimates (24) and (26) are obtained for (ω, c)−periodic solutions of the problem
(1)–(5).

The results obtained in this work will allow us in the future to investigate another
kind of (ω, c)−periodic problems for the equations of mathematical physics with impulsive
actions. We hope that our work will stimulate the study of various kind of (ω, c)−periodic
direct and inverse boundary value problems for impulsive ordinary and partial differential
and integro-differential equations and results of investigations find the applications in
mechanics, technology and in nanotechnology.
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